Multipartite quantum correlations and local recoverability.
نویسنده
چکیده
Characterizing genuine multipartite quantum correlations in quantum physical systems has historically been a challenging problem in quantum information theory. More recently, however, the total correlation or multipartite information measure has been helpful in accomplishing this goal, especially with the multipartite symmetric quantum (MSQ) discord (Piani et al. 2008 Phys. Rev. Lett. 100, 090502. (doi:10.1103/PhysRevLett.100.090502)) and the conditional entanglement of multipartite information (CEMI) (Yang et al. 2008 Phys. Rev. Lett. 101, 140501. (doi:10.1103/PhysRevLett.101.140501)). Here, we apply a recent and significant improvement of strong subadditivity of quantum entropy (Fawzi & Renner 2014 (http://arxiv.org/abs/1410.0664)) in order to develop these quantities further. In particular, we prove that the MSQ discord is nearly equal to zero if and only if the multipartite state for which it is evaluated is approximately locally recoverable after performing measurements on each of its systems. Furthermore, we prove that the CEMI is a faithful entanglement measure, i.e. it vanishes if and only if the multipartite state for which it is evaluated is a fully separable state. Along the way, we provide an operational interpretation of the MSQ discord in terms of the partial state distribution protocol, which in turn, as a special case, gives an interpretation for the original discord quantity. Finally, we prove an inequality that could potentially improve upon the Fawzi-Renner inequality in the multipartite context, but it remains an open question to determine whether this is so.
منابع مشابه
Local orthogonality as a multipartite principle for quantum correlations.
In recent years, the use of information principles to understand quantum correlations has been very successful. Unfortunately, all principles considered so far have a bipartite formulation, but intrinsically multipartite principles, yet to be discovered, are necessary for reproducing quantum correlations. Here we introduce local orthogonality, an intrinsically multipartite principle stating tha...
متن کاملGuess your neighbor's input: a multipartite nonlocal game with no quantum advantage.
We present a multipartite nonlocal game in which each player must guess the input received by his neighbor. We show that quantum correlations do not perform better than classical ones at this game, for any prior distribution of the inputs. There exist, however, input distributions for which general no-signaling correlations can outperform classical and quantum correlations. Some of the Bell ine...
متن کاملNo-local-broadcasting theorem for multipartite quantum correlations.
We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlation...
متن کاملFully nonlocal, monogamous, and random genuinely multipartite quantum correlations.
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and with fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy, and random outcomes a...
متن کاملGenuine Multipartite Entanglement without Multipartite Correlations.
Nonclassical correlations between measurement results make entanglement the essence of quantum physics and the main resource for quantum information applications. Surprisingly, there are n-particle states which do not exhibit n-partite correlations at all but still are genuinely n-partite entangled. We introduce a general construction principle for such states, implement them in a multiphoton e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 471 2177 شماره
صفحات -
تاریخ انتشار 2015